- 1. Simplify each of the following propositions as much as possible (P, Q, R represent propositions):
 - (a) $P \lor \text{true}$ (b) $P \lor \text{false}$ (c) $P \land \text{true}$ (d) $P \land \text{false}$ (e) $P \lor \neg P$ (f) $P \land \neg P$
- 2. Compare the truth tables or Venn diagrams for the propositions $P \wedge Q$ and P, and use this to explain why $(P \wedge Q) \Rightarrow P$. In words, what does this tell us? Does $P \Rightarrow (P \wedge Q)$?
- 3. Complete, and briefly explain using a Venn diagram, the distributive laws for \lor and \land :
 - (a) $P \lor (Q \land R) =$
 - (b) $P \wedge (Q \vee R) =$
- 4. Use the fact that $P \Rightarrow Q$ is equivalent to $Q \lor \neg P$, along with the results above, to simplify each of the following as far as possible:
 - (a) $(P \Rightarrow Q) \land P$
 - (b) $(P \Rightarrow Q) \land \neg Q$

In words, what does each of these tell us?

5. Rewrite the following proposition in *twelve* different ways, using only the symbols given:

$$P \lor (Q \lor R).$$

- *6. Using only P, Q, R, \lor , and \land (along with () as necessary), how many ways can you find to rewrite: $P \land (Q \lor R).$
- 7. Two of the following propositions are true, and two are false; determine which are which and briefly explain, then express each one in words.
 - (a) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} \text{ such that } x^3 = y.$
 - (b) $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z} \text{ such that } x^3 = y.$
 - (c) $\exists b \in \mathbb{R}$ such that $\forall a \in \mathbb{R}, b > a$.
 - (d) $\forall a \in \mathbb{Z}, \exists b \in \mathbb{Z} \text{ such that } b > a.$
- 8. Use the logical laws of negation to pass the ¬ symbol in each proposition below past every other logical connective and quantifier:
 - (a) $\neg [Q \lor (P \land \neg R)].$
 - (b) $\neg [\forall M, \exists N \text{ such that } \forall x, (x > N \Rightarrow 2x > M)].$

Logic and sets

- 9. Which two of our logical connectives and/or constants don't have analogues in the world of sets? Briefly, why not?
- 10. Use the logical definitions of our set operations to unravel each of the following into propositions with no set operations other than \in ; simplify the resulting propositions, if possible: